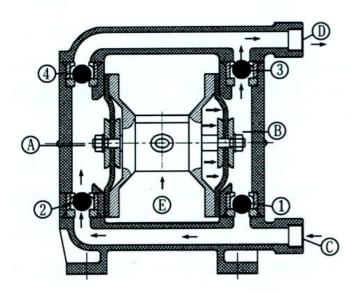


Table of contents

Performance summary	2
Working principle	3
Main usage·····	4
System connection schematic diagram·····	4
Performance graph·····	··5~8
Drawing of setting data·····	9
Tables of setting data·····	9
Performance parameter	10
Installation method·····	10
Exploded	11
Data book of sections	12
Characteristic of diaphragm······	13

Performance summary


DP air-driven diaphragm pumps not only can exhaust the flow liquid, but also can convey some uneasy flowed medium, with the merits the merits of self-pumping pump, diving pump, shield pump, slurry pump and impurity pump etc.

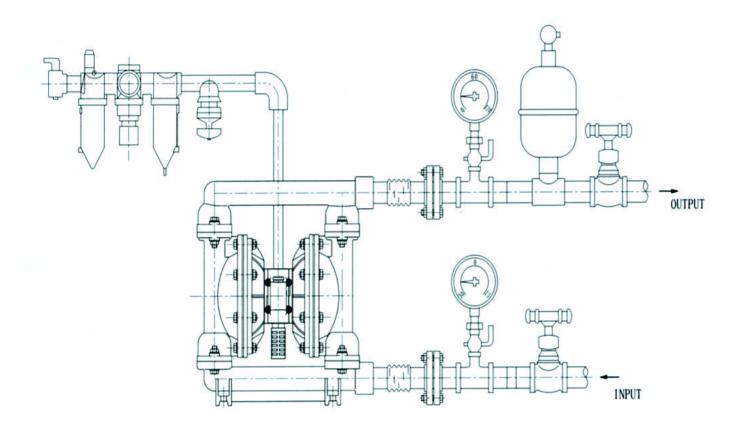
- 1. It's unnecessary to pour the drawing water, the suction lift reaches 7 m height, the delivery lift reaches 50 m length and the export pressure $\geq 6 \text{kgf/cm}^2$.
- 2. Wide flow and good performance. The diameter allowed to pass the max grain reaches 10mm. The damage is very less to the pump while exhausting the slurry and impurity.
- 3. The delivery lift and flow can pass the pneumatic valve open to realize the stepless adjustment(the pneumatic pressure adjustment is between 1-7kgf/cm²).
- 4. This pump has no rotary parts and no bearing seals. The diaphragm will completely separate the exhausted medium and pump running parts, working medium. The conveyed medium can't be leaked outside. Thus it will not cause the environmental pollution and human body safety dangerous while exhausting the toxin and flammable or corrosive medium.
- 5. No electricity. It's safe and reliable while using in the flammable and explore places.
 - 6. It can be soaked in medium.
- 7. It's convenient to use and reliable to work. Only open or close the gas valve body while starting or stopping. Even if no medium operation or pausing suddenly for long time because of accident matters, the pump will not be damaged caused by this. Once over-loading, the pump will automatically stop and possesses the self protection function. When the load recovers normally, it also can start automatically.
- 8. Simple structure and less wearing parts. This pump is simple in structure, installation and maintenance. The medium conveyed by the pump will not touch the matched pneumatic valve and coupling lever etc. Not like other kinds pumps, the performance will drop down gradually because of the damages of rotor, gear and vane etc.
 - 9. It can transmit the adhesive liquid (the viscosity is below 10000 centipoise).
- 10. This pump needn't the oil lubricant. Even if idling, it has any influence to the pump. This is a characteristic of this pump.

Working principle

There installs each diaphragm in both aligned working cavities(A) & (B), which can be connected together with a central coupling lever .The compression air enters the air distribution valve from the air entrance of the pump, draw the compression air into one cavity through the air distribution mechanism, push out the

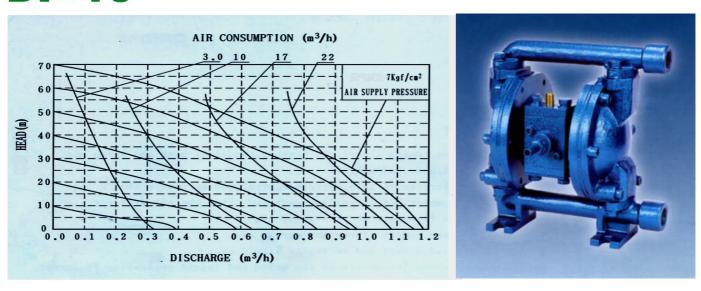
diaphragm movement in the cavity. The gas in another cavity will be drained. Once reaching the stroke terminal, the air distribution mechanism will automatically draw the compression air into another working cavity, push out the diaphragm to move towards the opposite direction, so as to let the both diaphragms continuously reciprocate motion in synchronism.

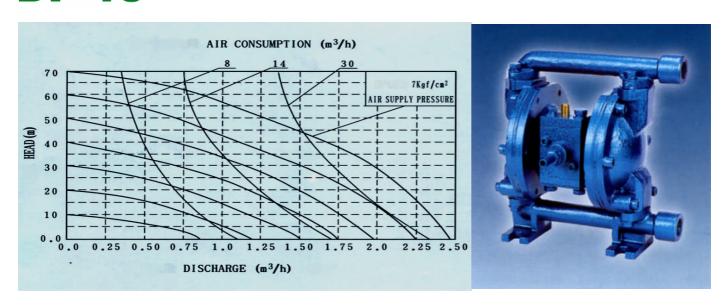
The compression air enters the air distribution valve from (E) shown as the diagram, let the diaphragm piece move towards the right direction. And the suction force in (A) chamber lets the medium flow into from (C) entrance, push out the ball valve (2) to enter (A) chamber, the ball valve (4) will be locked due to the suction force; The medium in(B)chamber will be pressed, push out the ball valve(3)to flow out from the exit (D). Meanwhile, let the ball valve (1) close, prevent backflow. Such movement in circles will let the medium uninterruptedly suck from (C) entrance and drain from (D) exit.



Main usage

- 1. The pump can suck the peanut, pickles, tomato slurry, red sausage, chocolate, hops and syrup etc.
 - 2. The pump can suck the paint, pigment, glue and adhesive etc.
- 3. The pump can suck various glazed slurries of tile, porcelain, brick and chinaware etc.
- 4. The pump can suck various grinding materials, corrosive agent and clean the oil dirt etc.
 - 5. The pump can suck various toxin and flammable or volatility liquid etc.
 - 6. The pump can suck various wedge water, cement slurry and mortar etc.
 - 7. The pump can suck various strong acid, alkali and corrosive liquid etc.
- 8. It can be used as a front-step transmission device of solid and liquid separation equipment.

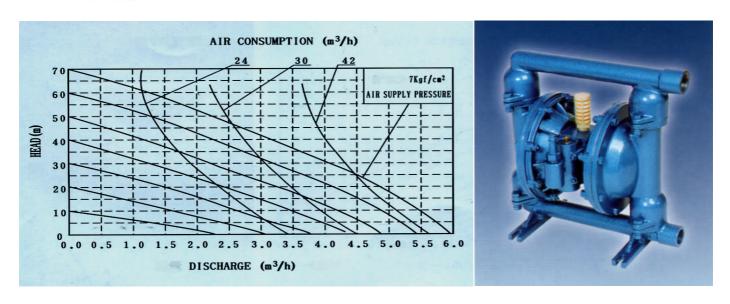

System connection schematic diagram


DP-10

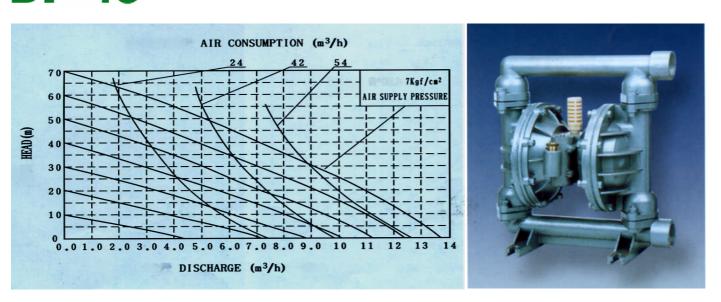
MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene

MATERIAL OF DIAPHRAGM: Neoprene Buna-N Teflon Viton

DP-15



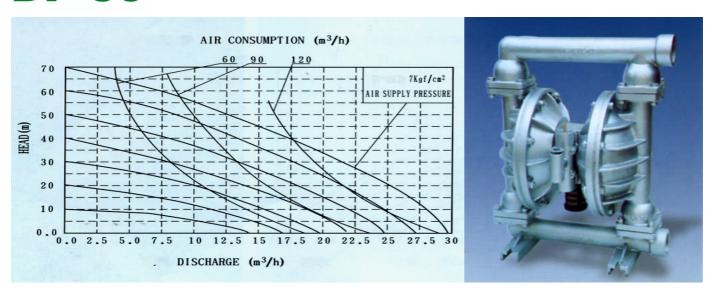
MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene MATERIAL OF DIAPHRAGM: Neoprene, Buna-N, Teflon, Viton



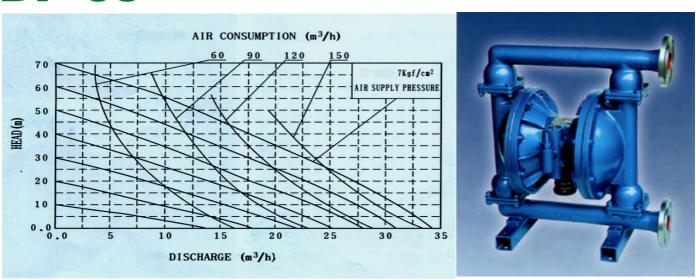
DP-25

MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene Kynar MATERIAL OF DIAPHRAGM: Neoprene, Buna-N, Teflon, Viton

DP-40



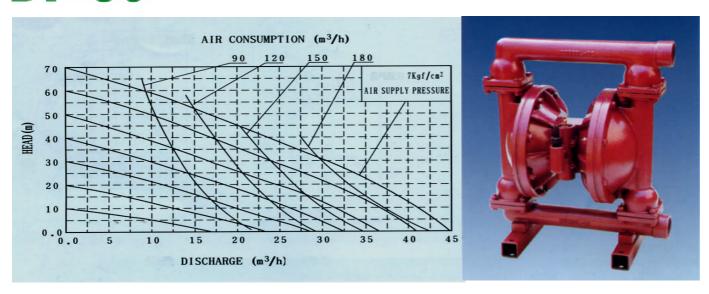
MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene Kynar MATERIAL OF DIAPHRAGM: Neoprene, Buna-N, Teflon, Viton



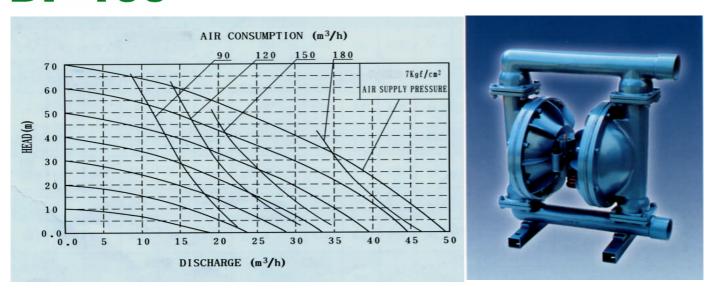
DP-50

MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene MATERIAL OF DIAPHRAGM: Neoprene, Buna-N, Teflon, Viton

DP-65



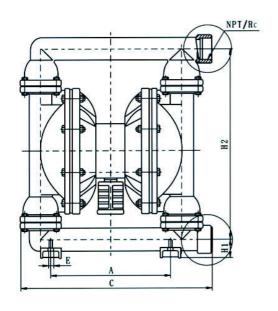
MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene MATERIAL OF DIAPHRAGM: Neoprene, Buna-N, Teflon, Viton

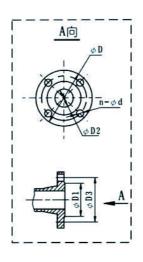


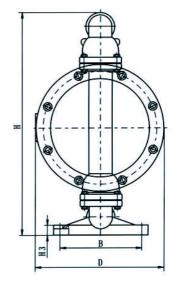
DP-80

MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene MATERIAL OF DIAPHRAGM: Neoprene, Buna-N, Teflon, Viton

DP-100




MATERIAL OF BODY: Stainless steel Aluminum Cast iron Polypropylene MATERIAL OF DIAPHRAGM: Neoprene, Buna-N, Teflon, Viton

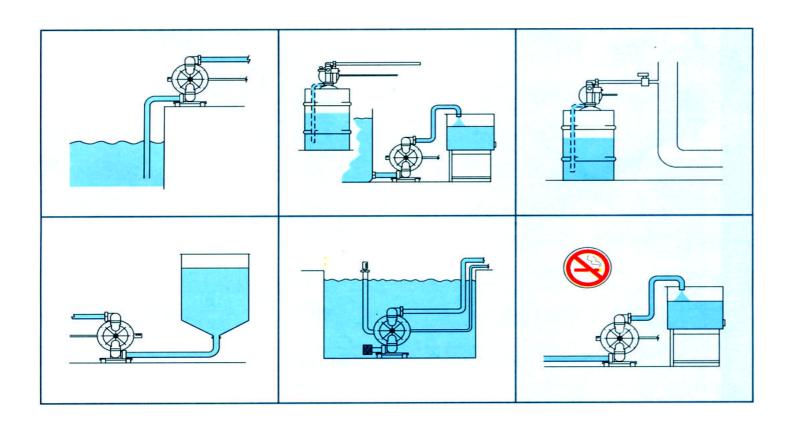


Drawing of setting data

Flang connection type

Tables of setting data

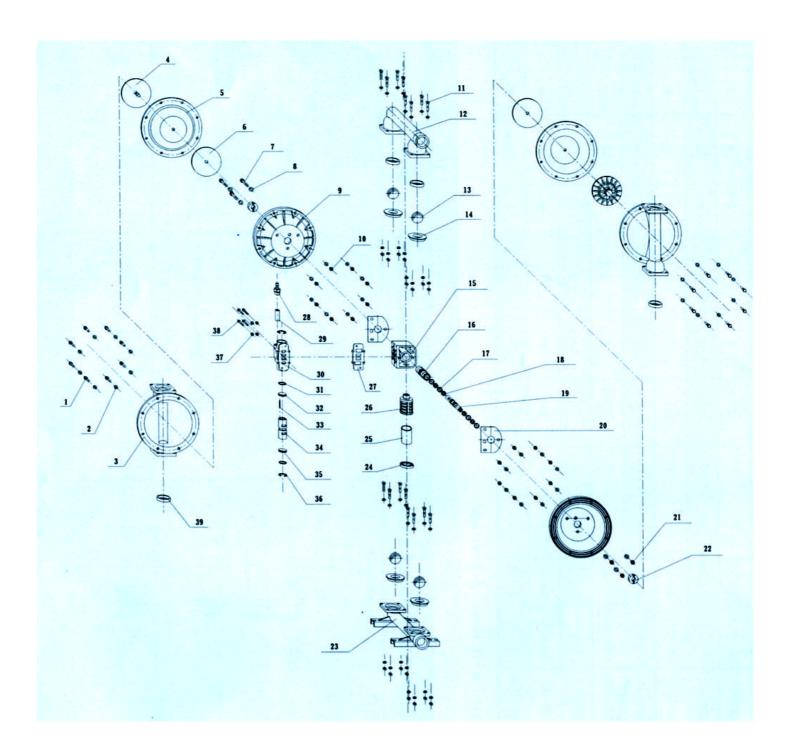
Model	A	В	С	D	E	H1	Н2	Н3	н	Screw	Flange					
										NPT/RC	D1	D2	D3	D	n	d
DP-10	135	48	218	144	12	34	176	10	226	1/2	ı	H	=	-	Ē	-
DP-15	135	48	218	144	12	34	176	10	226	1/2	ı	1	1	1	ī	-
DP-25	236	145	381	248	12	46	344	18	412	1		ı	=	E	ı	-
DP-40	236	145	381	248	12	50	348	18	428	11/2		1	=	1	1	-
DP-50	320	220	518	347	14	50	521	27	609	2	84	50	125	165	4	18
DP-65	320	220	518	347	14	50	521	27	609	21/2	104	65	145	185	4	18
DP-80	360	240	634	455	18	96	696	50	842	3	118	80	160	200	8	18
DP-100	360	240	634	455	18	130	721	60	960	-	140	100	180	200	8	18



Performance parameter

Model	Discharge	Head	Exit pressure	Sucked lift	Max grain Dia	Max pressure	Max air consumption	Materials			
Wiodei	m³/h	m	Kgf/cm ²	m	mm	Kgf/cm ²	m³/min	AA	SA	CA	PP
DP-10	0~0.8	0~50	6	5	1.0	7.0	0.3	A	A	A	A
DP-15	0~1.0	0~50	6	5	1.0	7.0	0.3	A	A	•	A
DP-25	0~2.4	0~50	6	7	2.5	7.0	0.6	A	A	A	A
DP-40	0~8.0	0~50	6	7	4.5	7.0	0.6	A	A	A	A
DP-50	0~12.0	0~50	6	7	8.0	7.0	0.9		A	•	X
DP-65	0~16.0	0~50	6	7	8.0	7.0	0.9	A	A	A	X
DP-80	0~24.0	0~50	6	7	10.0	7.0	1.5	A	A	A	X
DP-100	0~30.0	0~50	6	7	10.0	7.0	1.5	A	A	A	X

Note: **△**—have x--without


Installation method

Exploded

Databook of sections

№	Denomination	Amount	Material						
1	Bolt	16	Q235-A						
2	Gasket 10	64	Q235-A						
3	Stand column	2	SA CA AA						
4	Outside platen	2	Q235-A						
5	Dissepiments	2	Buna-N	Neoprene	Teflon	Viton			
6	Endo platen	2	1	AA	Q2	235-A			
7	Bolt	3	Q235-A						
8	Gasket	6	Q235-A						
9	Clapboard	2		A	A				
10	Screw cap M10	32		Q23:	5-A				
11	Bolt	16		Q23:	5-A				
12	Тор	1	SA	CA	AA	PP			
13	Ball	4	Buna-N	Neoprene	Teflon	Ceramic			
14	Tee	4	Buna-N	Neoprene	Teflon	Viton			
15	Pump body	1		A	A				
16	Cuprum series	1	H62						
17	O-ring seal	4	Teflon						
18	O-ring seal	4	Buna-N						
19	Shaft	1	SA						
20	Block gasket	2	Oil-proof rubber rock wool						
21	Screw cap	3		Q23:	5-A				
22	Site-ring	2		PI)				
23	Bottom	1	SA	CA	AA	PP			
24	Muffler cover	1		AE	BS				
25	Muffling coat	1		QSn6.	5-0.1				
26	Muffler body	1		AE	BS				
27	Air valve gasket	1		Oil-proof rubb	er rock wool				
28	Air connecter	1		Q23:	5-A				
29	Into gases percolator	1		Sintering br	ass granule				
30	Air distributive valve	1		Q23:					
31	O-ring	2		Buna	a-N				
32	Baffle	1	AA						
33	Site billot	1	H62						
34	Piston	1	AA						
35	Baffle	1		A	A				
36	Spring collar	2		65N					
37	Spring cushion	4	65Mn						
38	Bolt	4	Q235-A						
39	Tee pressure annulus	4		AA	Q2	235-A			

Features of some kind of diaphragm materials

Diaphragm	Buna-N	Naammana	Viton	Teflon
Medium	Buna-N	Neoprene	VILON	Tenon
Nitric acid, fuming	X	X	Δ	\triangle
Nitric acid, concentrated	X	X	Δ	\triangle
Sulphuric acid, concentrated	X	X	0	Δ
Hydrochloric acid, concentrated	X	Δ	Δ	Δ
Phosphoric acid, concentrated	X	Δ	Δ	\triangle
Acetic acid, concentrated	X	X	X	Δ
Sodium hydroxide, concentrated	0	0	\triangle	Δ
Anhydrous ammonia	\triangle	Δ	Δ	Δ
Nitric acid, dilute	X	X	0	Δ
Sulphuric acid, dilute	\triangle	Δ	Δ	Δ
Hydrochloric acid, dilute	X	0	\triangle	Δ
Phosphoric acid, dilute	X	X	\triangle	Δ
Sodium hydroxide, dilute	0	0	\triangle	Δ
Ammonia liquid	Δ	Δ	X	X
Benzene	X	X	0	0
Gasoline	0	0	0	0
Petroleum	\triangle	X	0	0
Carbon tetrachloride	0	X	0	0
Carbon disulfide	0	X	X	0
Ethanol	0	0	0	0
Acetone	X	Δ	X	0
Cresol	X	Δ	\triangle	0
Acetaldehyde	X	X	\triangle	0
Ethyl benzene	X	X	\triangle	0
Acrylonitrile	Δ	Δ	X	0
N-Butanol	0	0	0	0
Butadiene	0	X	Δ	0
Styrene	X	X	Δ	0
Ethyl acetate	X	X	X	0
Aether	X	X	X	X

Notes: "O"refers to long service life, "\textsup "refers to general service life, "X" refers to Non available. This table is made according to corrosion resistance, the actual service life will be differed from on the basis of pressure and impurities in pump stroke etc. because the elasticity of PTEE is inferior to rubber.